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A ONE-DIMENSIONAL TRANSPORTCODE FOR FIELD-REVERSED CONFIGURATIONS*

E. J. Caramana, M.-Y. Hsiao, and J. L. Schwarzmeier

Los Aleuaos National Laboratory

Los Alamos, New Mexico B7545, USA

A radial transport code for Field-Reversed Configurations (FRCs) is

described. Assuming quasi-neutrality and neglecting inertia and viscous force,

the evolution of particle densities, temperatures, and magnetic field through a

series of equilibrium states is simulated. To solve the equations,

transformations of all dependent variables and the one independent variable are

carried out . The processes of interest can be decoupled into two distinctive

sets of equations that describe adiabatic and nonadiabatic processes. These

sets of equations are then solved by two alternating steps: adiabatic and

nonadiabat lc.

Consider the FRC magnetic field geometry given in Fig. 1 Shown is a

cylindrical (r,d,z) coordinate system where we delineate regions I, 11, cnd 111

by ro, the radial location of the field null, rs, the radial location of the

separatrix, and rw, the position of the wall. We make the approximation of

straight fle]d

on r only.

positions with

as the same

lines so that the magnetic field has one component that depends

In addltlon we “slave” regions I and 11 by identifying radial

the saue magnitude of magnetic flux measured from the field null

field line with the same density and temperature We use a

flux-type independent variable wher~ this identification becomes automatic,

Although we neglect fieldl]ne curvature, we allow for both changes in the axial

length I (this is necessary to satisfy axial force balance— the everage beta

condition) and sepnrate ax]al energy and particle loss terms. This together

with the requirement that our system of equations have no “explicit” d or z

dependence leads to magnetic and velocity fields ~ and ~ of the form

~= (O,O,Bz(r)) and ~= (Vr(r),C),Vz(r)z), With these ●pproximate ons the

Eulerian form of our model becomes: .,.m

●*

c%

firBz+~vrrBz=-$r— (Ohm’s + Ampere’s laws),
en

(1)
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B:

— = const.
‘+8n

(Radial momentum balmce), (2)

a{i Vz(z=f) {i

z
~ vr~l = -

+ ar
—+S , i = 1,2,3 (Transport) ,

1
(33-C)

r i

,

*ere <1 = rnl

electron and ion

c~/en is the

red]ation terms

equilibration,

= #/(7-1),
{2 e = rT]/(Y-]) (n is density;<3 ~ Te and Ti are

temperatures, y is the ratio of specific heats), The term

nonideal part of Ohm’s lawl and Sj contains all transport and

(e.g., the rma 1 conduction, ohmic heating, electron-ion

axial loss, etc. —see Ref. 1). The first term on the

right-hand-side of Eq. (3) is a source term due to axial length change (<i is

defined per unit lenght). The unknown Vz(z = 1) is determined by the average

betn condition (~> = 1 -- r~/2 r~)d2

Equations (l)-(3) describe evolution through a series of equilibrium states.

Thus , Eq. (2) actually dt termines the radial velocity Vr, This rather

nonnewtonian system of equations, whjch )s the result of the neglect of inertja,

comes from ignoring the fast tlmescale associated with the individual forces

and , instead, fallowing the long timescale associated with the time rate of

change of these ferces that are assumed to be in balance, That the forces in

balance have time dependence induces a convective flow. This neglect of a fast

timescale changes the usually hyperbolic mementum equation into the elliptic

equation (instantaneous correlation of cause and effect) given as Eq (2), and

is a general feature of such an approximation,3

Equations (!)-(3) are most easily solved by a transformation to varimbles

that in the absence of dis~ipation (~= Si =0) are adiabatjc inmriants,

These invariants then evolve in time due to all forms of dissipation This

“flux variable” representation has been used previously,+’5 We briefly outline,;

new features relevant to the FRCO

In the Ilux variable procedure, we define # = #(r,t) as ~ = 2w/~ r’Bzdr’/~o

(*G= f!nl~” rBzdr, so that * ic normalized to have unit domain independent cf

flux decay at the field null r = ro) ‘~hen, utilizing Eq, (1) to finish

defining the ●ppropriate partial derivatives (Eq. (1) is rewritten to define

v E Vr+ f((i) s ~r/dtl~—the velocity of r ●t fixed #), we transform

Eqs, (2)-(3) from the (r,t) to the (*(r, t), t) representation. This

.



-3-

transformation determines the new “adiabatic” dependent variables and eliminates

Vr, These new variables are found to be ~i s <i dr/d#. Thus,

<idr ti?~
ti ~ ——

2mBzdr/% = 2mBz

and utilizing y = (insuresr2/2 in place of r regularity at r = O) we have

~Y/~ = IJO/2?TBz. (t~ = nay/W, Y is proportional to the volume of a flux

surface). Thus (1 end ~Y/W “ _ as Bz(r”ro) ● O at the field null. Examination

of the form of this singularity ((1 ● l/(l~)1J2 as ~ + 1) suggests that we

transform the variebles ~, (i to the systemq z - (1-#)1i2 (-l<q<O), ~iz - q~i. . ,

Now the dependent variables ii, ~y/~q and the transformed equations writ4en in

terms of these variables are everywhere nonsingular. The system of Eqs. (l)-(3)

becomes

-y- 1
27;1 (tz

-y 1
+f3)

+
(aytaq)y

?2V3 I%ac

am3 (ay/aq)z = @(yw-2Y0)2 (4)

Vz(z = ;) -
t
‘i +Lsi: , i = 1,2,3 (sa-C)

A 2

In Eq, (4)(pressure balance), which has been written for a vacuum jn region 111,

vVac = vacuum flux, yw = r#2 and y. = r~/2 = r~/4 Specifying ~i , *0, #Ivac,

YW* ~d a “guess” for yO, Eq (4), which is an alg;braic equation for ~y/~q, is

sO]ved for aytan. A solution is obtained when ~ - (~y/aq) dq equals the

gueseed value

be shown to be

flux vanishes

ij ●re flux

for y. The second term on the left%a:d-side of Eqs. (6a-c) can

regular as q ● O, and when regione 1 and 11 ●re “slaved” thie

●t q = 00 TO slave these regions, y]] _ 2% - y] is used, tiere

surfece varisblee. Notice that in the ideal limit
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● (~ = ‘i = ~~lat = O) Eqs. (4)-(5) reduce to a simple form where no convective
\

terms are present (Eq. (5) decouples fromEq. (4)).

After writing the explicit form of Eqs. (4)-(5) in an appropriate manner we

separate the various terms in Eq. (5) into either convective, diffusive, or

adiabatic in character. First, we advance a time step by solving Eqs. (4)-(5)

keeping the convective and diffusive terms in Eq. (5). Second!y, we advance

Eqs. (4)-(5) keeping only the adiabatic terms (sources enc sinks) in Eq. (5).

This completes one time step. In the first part Eqs. (4)-(5) are solved using a

predictor-corrector method where Eq. (5) is implicitly differenc~d in block

tridiagonal form.

Region 111, the open field region, will not always be a vacuum region, In

the latter case a separate flux variable is defined in this region and

Eqs. (1)-(3) are appropriately transformed. (In this transformation it is

important to use the fact
‘s

that tl(jO rBzdr)/~t = O.) We then require the

continuity of the flux of all quantities at the separatrix.
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